Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Nutr Biochem ; 119: 109410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364793

RESUMO

The gut has been suggested as the first organ to be affected by unbalanced diets contributing to the obesogenic process. This study aimed to test a short time-course exposition model to a known pro- or anti-inflammatory enriched fatty diet to understand the early gut alterations. Male mice were exposed to the chow diet (CT), high-fat (HF) diet, or a high-fat diet partially replaced on flaxseed oil (FS), rich in omega-3 (ω3), for 14 days. HF and FS increased the total body weight mass compared with the CT group, but FS reduced the epididymal fat depot compared to HF. The bioinformatics from mice and human databases showed the Zo1-Ocln-Cldn7 tight junctions as the main protein-triad. In the ileum, the HF diet has increased IL1ß transcript and IL1ß, TNFα, and CD11b proteins, but reduced the tight junctions (Zo1, Ocln, and Cld7) compared to the CT group. Despite the FS diet being partially efficient in protecting the ileum against inflammation, the tight junctions were increased, compared to the HF group. The GPR120 and GPR40 receptors were unaffected by diets, but GPR120 was colocalized on the surface of ileum macrophages. The short period of a high-fat diet was enough to start the obesogenic process, ileum inflammation, and reduce the tight junctions. Flaxseed oil did not protect efficiently against dysmetabolism. Still, it increased the tight junctions, even without alteration on inflammatory parameters, suggesting the protection against gut permeability during early obesity development.


Assuntos
Ácidos Graxos Ômega-3 , Óleo de Semente do Linho , Humanos , Masculino , Animais , Camundongos , Óleo de Semente do Linho/farmacologia , Junções Íntimas/metabolismo , Ácidos Graxos Insaturados , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Ácidos Graxos
2.
Cell Mol Life Sci ; 80(5): 122, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052684

RESUMO

OBJECTIVE: Intriguingly, hyperinsulinemia, and hyperglycemia can predispose insulin resistance, obesity, and type 2 diabetes, leading to metabolic disturbances. Conversely, physical exercise stimulates skeletal muscle glucose uptake, improving whole-body glucose homeostasis. Therefore, we investigated the impact of short-term physical activity in a mouse model (Slc2a4+/-) that spontaneously develops hyperinsulinemia and hyperglycemia even when fed on a chow diet. METHODS: Slc2a4+/- mice were used, that performed 5 days of endurance or strength exercise training. Further analysis included physiological tests (GTT and ITT), skeletal muscle glucose uptake, skeletal muscle RNA-sequencing, mitochondrial function, and experiments with C2C12 cell line. RESULTS: When Slc2a4+/- mice were submitted to the endurance or strength training protocol, improvements were observed in the skeletal muscle glucose uptake and glucose metabolism, associated with broad transcriptomic modulation, that was, in part, related to mitochondrial adaptations. The endurance training, but not the strength protocol, was effective in improving skeletal muscle mitochondrial activity and unfolded protein response markers (UPRmt). Moreover, experiments with C2C12 cells indicated that insulin or glucose levels could contribute to these mitochondrial adaptations in skeletal muscle. CONCLUSIONS: Both short-term exercise protocols were efficient in whole-body glucose homeostasis and insulin resistance. While endurance exercise plays an important role in transcriptome and mitochondrial activity, strength exercise mostly affects post-translational mechanisms and protein synthesis in skeletal muscle. Thus, the performance of both types of physical exercise proved to be a very effective way to mitigate the impacts of hyperglycemia and hyperinsulinemia in the Slc2a4+/- mouse model.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Camundongos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Músculo Esquelético/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo
3.
J Nutr Biochem ; 114: 109270, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36706930

RESUMO

It is known that long-term high-fat diet (HF) feeding drastically affects the adipose tissue, contributing to metabolic disorders. Recently, short-term HF consumption was shown to affect different neuronal signaling pathways. Thus, we aimed to evaluate the inflammatory effects of a short-term HF and whether a diet containing omega-3 fatty acid fats from flaxseed oil (FS) has protective effects. Mice were divided into three groups for 3 d, according to their diets: Control group (CT), HF, or FS for 3 d. Lipid profiles were assessed through mass spectrometry and inflammatory markers by RT-qPCR and Western blotting. After short-term HF, mice increased food intake, body weight, adiposity, and fasting glucose. Increased mRNA content of Ccl2 and Tnf was demonstrated in the HF compared to CT in mesenteric adipose tissue. In the liver, TNFα protein was higher in the HF group than in CT, followed by a decreased polyunsaturated fatty acids tissue incorporation in HF. On the other hand, the consumption of FS reduced food intake and fasting glucose, as well as increased omega-3 fatty acid incorporation in MAT and the liver. However, short-term FS was insufficient to control the early inflammation triggered by HF in MAT and the liver. These data demonstrated that a 3-d HF diet is enough to damage glucose homeostasis and trigger inflammation. In contrast, short-term FS protects against increased food intake and fasting glucose but not inflammation in mice.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos Ômega-3 , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Óleo de Semente do Linho/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Glucose/metabolismo , Camundongos Endogâmicos C57BL
4.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382659

RESUMO

Omega 3 (ω3) fatty acids have been described since the 1980s as promising anti-inflammatory substances. Prostaglandin and leukotriene modulation were exhaustively explored as the main reason for ω3 beneficial outcomes. However, during the early 2000s, after the human genome decoding advent, the nutrigenomic approaches exhibited an impressive plethora of ω3 targets, now under the molecular point of view. Different G protein-coupled receptors (GPCRs) recognizing ω3 and its derivatives appear to be responsible for blocking inflammation and insulin-sensitizing effects. A new class of ω3-derived substances, such as maresins, resolvins, and protectins, increases ω3 actions. Inflammasome disruption, the presence of GPR120 on immune cell surfaces, and intracellular crosstalk signaling mediated by PPARγ compose the last discoveries regarding the multipoint anti-inflammatory targets for this nutrient. This review shows a detailed mechanistic proposal to understand ω3 fatty acid action over the inflammatory environment in the background of several chronic diseases.

5.
Prostaglandins Other Lipid Mediat ; 159: 106622, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091082

RESUMO

The incidence of cardiovascular diseases and metabolic disorders has increased worldwide. Clinical and experimental research has shown that the consumption of ω-3 FAs can be beneficial to metabolism in several ways, as they can act on metabolic pathways. Our objective was to evaluate the effect of treatment with linseed oil, a vegetable oil rich in alpha-linolenic acid, and EPA and DHA in different proportions (3:1 EPA:DHA, and 1:3 EPA:DHA), on the metabolic disorders induced by a high-fat diet (20 % lipids) in rats for 2 weeks, after 18 weeks of consumption of a high-fat diet. In 18 weeks, the high-fat diet increased blood glucose, systolic blood pressure, triglyceride concentration in the liver and adipose tissue, and impaired insulin sensibility without interfering in the weight of the animals. All treatments were effective in reducing the deposition of hepatic type III collagen, the proportion of ω-6/ω-3 in the liver and WAT (white adipose tissue), the proportion of area/number of adipocytes, and the gene expression of the ACC, FAS, and CPT1 enzymes. In addition, treatment with EPA and DHA reduced blood glucose, serum TNF-α concentration, amount of liver fat, degree of microsteatosis and type I collagen deposition in the liver, deposition of type I and III collagen in TA, gene expression of the transcription factor SREBP-1c, and increased hepatic binucleation. EPA in major proportion was more effective in reducing the area of adipocytes, hepatic triglyceride concentration, PPAR-α expression, and WAT fat weight. DHA in a major proportion reduced the concentration of MCP1 in WAT. LO treatment did not have any isolated effects. We concluded that EPA and DHA were more effective in treating metabolic damage than treatment with LO, leading to a more favorable metabolic profile.


Assuntos
Dieta Hiperlipídica , Ácidos Graxos Ômega-3 , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Óleo de Semente do Linho/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Triglicerídeos/metabolismo
6.
J Physiol ; 600(4): 797-813, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450053

RESUMO

KEY POINTS: Time-restricted feeding (TRF, in which energy intake is restricted to 8 h/day during the dark phase) alone or combined with aerobic exercise (AE) training can prevent weight gain and metabolic disorders in Swiss mice fed a high-fat diet. The benefits of TRF combined with AE are associated with improved hepatic metabolism and decreased hepatic lipid accumulation. TRF combined with AE training increased fatty acid oxidation and decreased expression of lipogenic and gluconeogenic genes in the liver of young male Swiss mice. TRF combined with AE training attenuated the detrimental effects of high-fat diet feeding on the insulin signalling pathway in the liver. ABSTRACT: Time-restricted feeding (TRF) or physical exercise have been shown to be efficient in the prevention and treatment of metabolic disorders; however, the additive effects of TRF combined with aerobic exercise (AE) training on liver metabolism have not been widely explored. In this study TRF (8 h in the active phase) and TRF combined with AE (TRF+Exe) were compared in male Swiss mice fed a high-fat diet, with evaluation of the effects on insulin sensitivity and expression of hepatic genes involved in fatty acid oxidation, lipogenesis and gluconeogenesis. As in previous reports, we show that TRF alone (eating only between zeitgeber time 16 and 0) was sufficient to reduce weight and adiposity gain, increase fatty acid oxidation and decrease lipogenesis genes in the liver. In addition, we show that mice of the TRF+Exe group showed additional adaptations such as increased oxygen consumption ( V̇O2${\dot V_{{{\rm{O}}_{\rm{2}}}}}$ ), carbon dioxide production ( V̇CO2${\dot V_{{\rm{C}}{{\rm{O}}_{\rm{2}}}}}$ ) and production of ketone bodies (ß-hydroxybutyrate). Also, TRF+Exe attenuated the negative effects of high-fat diet feeding on the insulin signalling pathway (insulin receptor, insulin receptor substrate, Akt), and led to increased fatty acid oxidation (Ppara, Cpt1a) and decreased gluconeogenic (Fbp1, Pck1, Pgc1a) and lipogenic (Srebp1c, Cd36) gene expression in the liver. These molecular results were accompanied by increased glucose metabolism, lower serum triglycerides and reduced hepatic lipid content in the TRF+Exe group. The data presented in this study show that TRF alone has benefits but TRF+Exe has additive benefits and can mitigate the harmful effects of consuming a high-fat diet on body adiposity, liver metabolism and glycaemic homeostasis in young male Swiss mice.


Assuntos
Resistência à Insulina , Doenças Metabólicas , Animais , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Aumento de Peso
7.
Trials ; 22(1): 927, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922604

RESUMO

The low-grade inflammation is pivotal in obesity and its comorbidities; however, the inflammatory proteins are out of target for traditional drug therapy. Omega-3 (ω3) fatty acids can modulate the downstream signaling of Toll-like receptor (TLR) and tumor necrosis factor-α receptor (TNFα) through GPR120, a G-protein-coupled receptor, a mechanism not yet elucidated in humans. This work aims to investigate if the ω3 supplementation, at a feasible level below the previously recommended level in the literature, is enough to disrupt the inflammation and endoplasmic reticulum stress (ER-stress), and also if in acute treatment (3 h) ω3 can activate the GPR120 in peripheral blood mononuclear cells (PBMC) and leukocytes from overweight non-alcoholic fatty liver disease (NAFLD) participants. The R270H variant of the Ffar4 (GPR120 gene) will also be explored about molecular responses and blood lipid profiles. A triple-blind, prospective clinical trial will be conducted in overweight men and women, aged 19-75 years, randomized into placebo or supplemented (2.2 g of ω3 [EPA+DHA]) groups for 28 days. For sample calculation, it was considered the variation of TNFα protein and a 40% dropout rate, obtaining 22 individuals in each group. Volunteers will be recruited among patients with NAFLD diagnosis. Anthropometric parameters, food intake, physical activity, total serum lipids, complete fatty acid blood profile, and glycemia will be evaluated pre- and post-supplementation. In the PBMC and neutrophils, the protein content and gene expression of markers related to inflammation (TNFα, MCP1, IL1ß, IL6, IL10, JNK, and TAK1), ER-stress (ATF1, ATF6, IRE1, XBP1, CHOP, eIF2α, eIF4, HSP), and ω3 pathway (GPR120, ß-arrestin2, Tab1/2, and TAK1) will be evaluated using Western blot and RT-qPCR. Participants will be genotyped for the R270H (rs116454156) variant using the TaqMan assay. It is hypothesized that attenuation of inflammation and ER-stress signaling pathways in overweight and NAFLD participants will be achieved through ω3 supplementation through binding to the GPR120 receptor. TRIAL REGISTRATION: ClinicalTrials.gov #RBR-7x8tbx. Registered on May 10, 2018, with the Brazilian Registry of Clinical Trials.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Estresse do Retículo Endoplasmático , Humanos , Inflamação , Leucócitos Mononucleares , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Sobrepeso , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
Exp Gerontol ; 139: 111021, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659331

RESUMO

TRB3, a mammalian homolog of Drosophila tribbles, plays an important role in multiple tissues and it has been implicated in stress response regulation and metabolic control. However, the role of hepatic TRB3 and its relationship with endoplasmic reticulum stress (ER stress) during aging has not been elucidated. Thus, the present study aimed to explore the association of aging with TRB3 and ER stress on the hepatic glucose production in Wistar rats. We found the TRB3 protein content to be higher in livers of old rats (27 months) compared to young (3 months) and middle-aged (17 months) rats. The increased content of hepatic TRB3 of the old rats was associated with insulin resistance (decreased protein kinase B (Akt) and Forkhead Box O1 (FoxO1) phosphorylation) and increased enzymes of gluconeogenesis (phosphoenolpyruvate carboxykinase (PEPCK) and Glucose 6-phosphatase (G6Pase)). Moreover, aging was associated with activation of the endoplasmic reticulum stress pathway-related molecules, with an increase in phosphorylation of Inositol-requiring enzyme 1 (p-IRE1α), the protein kinase RNA-like endoplasmic reticulum kinase (p-PERK), eukaryotic translation initiation factor-α (p-eIF2α), binding immunoglobulin protein (BiP), and the C/EBP homologous protein (CHOP) contents in rats. These molecular changes resulted in increased liver glucose production in response to the pyruvate challenge and hyperglycemia of the old rats. In conclusion, our results suggested that, by interfering with insulin signaling in the liver, TRB3 was associated with ER stress and increased hepatic glucose production in aging rats.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases , Envelhecimento , Animais , Glucose , Fígado , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Ratos , Ratos Wistar
9.
Eur J Neurosci ; 50(7): 3181-3190, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31206806

RESUMO

Adiponectin is an adipokine that acts in the control of energy homeostasis. The adaptor protein containing the pleckstrin homology domain, phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1) is a key protein in the adiponectin signaling. The APPL1 mediates a positive effect on the insulin signaling through the interaction with the phosphoinositide 3-kinase (PI3K). Thus, the present study aimed to explore the effects of an acute physical exercise session on the hypothalamic adiponectin signaling. Firstly, using bioinformatics analysis, we found a negative correlation between hypothalamic APPL1 mRNA levels and food consumption in several strains of genetically diverse BXD mice. Also, the mice and the human database revealed a positive correlation between the levels of APPL1 mRNA and PI3K mRNA. At the molecular level, the exercised mice showed increased APPL1 and PI3K (p110) protein contents in the hypothalamus of Swiss mice. Furthermore, the exercise increases co-localization between APPL1 and PI3K p110 predominantly in neurons of the arcuate nucleus of hypothalamus (ARC). Finally, we found an acute exercise session reduced the food intake 5 hr after the end of fasting. In conclusion, our results indicate that physical exercise reduces the food intake and increases some proteins related to adiponectin pathway in the hypothalamus of lean mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipotálamo/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Ingestão de Alimentos/fisiologia , Masculino , Camundongos , RNA Mensageiro/metabolismo , Transdução de Sinais
10.
Brain Behav Immun ; 79: 284-293, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30797044

RESUMO

The consumption of saturated fatty acids is one of the leading risk factors for Alzheimer's Disease (AD) development. Indeed, the short-term consumption of a high-fat diet (HFD) is related to increased inflammatory signals in the hippocampus; however, the potential molecular mechanisms linking it to AD pathogenesis are not fully elucidated. In our study, we investigated the effects of short-term HFD feeding (within 3, 7 and 10 days) in AD markers and neuroinflammation in the hippocampus of mice. The short period of HFD increased fasting glucose and HOMA-IR. Also, mice fed HFD increased the protein content of ß-Amyloid, pTau, TNFα, IL1ß, pJNK, PTP1B, peIF2α, CHOP, Caspase3, Cleaved-Caspase3 and Alzheimer-related genes (Bax, PS1, PEN2, Aph1b). At 10 days, both neuronal (N2a) and microglial (BV2) cells presented higher expression of inflammatory and apoptotic genes when stimulated with palmitate. These findings suggest that a short period of consumption of a diet rich in saturated fat is associated with activation of inflammatory, ER stress and apoptotic signals in the hippocampus of young mice.


Assuntos
Doença de Alzheimer/etiologia , Dieta Hiperlipídica/efeitos adversos , Hipocampo/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/metabolismo , Interleucina-1beta , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Neurônios/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Lobo Temporal/metabolismo , Proteínas tau/metabolismo
11.
J Cell Biochem ; 120(1): 697-704, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30206970

RESUMO

The obesity is a result of energy imbalance and the increase in thermogenesis seems an interesting alternative for the treatment of this disease. The mechanism of energy expenditure through thermogenesis is tightly articulated in the hypothalamus by leptin. The hypothalamic extracellular signal-regulated kinase-1/2 (ERK1/2) is a key mediator of the thermoregulatory effect of leptin and mediates the sympathetic signal to the brown adipose tissue (BAT). In this context, physical exercise is one of the main interventions for the treatment of obesity. Thus, this study aimed to verify the effects of acute physical exercise on leptin-induced hypothalamic ERK1/2 phosphorylation and thermogenesis in obese mice. Here we showed that acute physical exercise reduced the fasting glucose of obese mice and increased leptin-induced hypothalamic p-ERK1/2 and uncoupling protein 1 (UCP1) content in BAT ( P < 0.05). These molecular changes are accompanied by an increased oxygen uptake (VO 2 ) and heat production in obese exercised mice ( P < 0.05). The increased energy expenditure in the obese exercised animals occurred independently of changes in spontaneous activity. Thus, this is the first study demonstrating that acute physical exercise can increase leptin-induced hypothalamic ERK1/2 phosphorylation and energy expenditure of obese mice.


Assuntos
Hipotálamo/metabolismo , Leptina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Obesidade/metabolismo , Condicionamento Físico Animal , Termogênese/fisiologia , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Injeções Intraperitoneais , Leptina/administração & dosagem , Camundongos , Camundongos Obesos , Consumo de Oxigênio/fisiologia , Fosforilação/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
12.
Einstein (Sao Paulo) ; 16(3): eAO4353, 2018 Aug 06.
Artigo em Inglês, Português | MEDLINE | ID: mdl-30088548

RESUMO

OBJECTIVE: To investigate the effects of physical training on metabolic and morphological parameters of diabetic rats. METHODS: Wistar rats were randomized into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes mellitus was induced by Alloxan (35mg/kg) administration for sedentary diabetic and Trained Diabetic Groups. The exercise protocol consisted of swimming with a load of 2.5% of body weight for 60 minutes per day (5 days per week) for the trained control and Trained Diabetic Groups, during 6 weeks. At the end of the experiment, the rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin and total protein. Liver samples were extracted for measurements of glycogen, protein, DNA and mitochondrial diameter determination. RESULTS: The sedentary diabetic animals presented decreased body weight, blood insulin, and hepatic glycogen, as well as increased glycemia and mitochondrial diameter. The physical training protocol in diabetic animals was efficient to recovery body weight and liver glycogen, and to decrease the hepatic mitochondrial diameter. CONCLUSION: Physical training ameliorated hepatic metabolism and promoted important morphologic adaptations as mitochondrial diameter in liver of the diabetic rats.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Glicogênio Hepático/metabolismo , Fígado/metabolismo , Fígado/ultraestrutura , Mitocôndrias Hepáticas/ultraestrutura , Condicionamento Físico Animal , Natação/fisiologia , Animais , Glicemia/metabolismo , Peso Corporal , Diabetes Mellitus Experimental/induzido quimicamente , Teste de Esforço , Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/anatomia & histologia , Masculino , Condicionamento Físico Animal/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar
13.
Cytokine ; 110: 87-93, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29705396

RESUMO

Adiponectin is considered an adipokine that has essential anti-inflammatory and insulin-sensitivity actions. The adaptor protein containing the pleckstrin homology domain, the phosphotyrosine-binding domain, and leucine zipper motif 1 (APPL1) is a protein involved in adiponectin signaling that plays a role in many physiological and pathophysiological processes. In the central nervous system, adiponectin can potentiate the effects of leptin in the arcuate proopiomelanocortin (POMC) neurons. However, the role of APPL1 in the hypothalamus is not well understood. Therefore, in this study, we explored the effects of acute physical exercise on APPL1 protein content in the hypothalamus and food intake control in leptin stimulated-obese mice. Here we show that acute exercise increased serum adiponectin levels and APPL1 content in the hypothalamus, which were followed by reduced food intake in obese mice. Further, at the molecular level, the exercised obese mice increased the protein kinase B (Akt) signaling in the hypothalamus and attenuated the mammalian homolog of Drosophila tribbles protein 3 (TRB3) levels. In conclusion, the results indicate physical exercise is capable of increasing APPL1 protein content in the hypothalamus of leptin stimulated-obese mice and modulating food intake.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hipotálamo/metabolismo , Condicionamento Físico Animal/fisiologia , Adiponectina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Ingestão de Alimentos/fisiologia , Insulina/metabolismo , Resistência à Insulina/fisiologia , Leptina/metabolismo , Camundongos , Camundongos Obesos , Neurônios/metabolismo , Neurônios/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
14.
Exp Gerontol ; 104: 66-71, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421605

RESUMO

The insulin and Brain-Derived Neurotrophic Factor (BDNF) signaling in the hippocampus promotes synaptic plasticity and memory formation. On the other hand, aging is related to the cognitive decline and is the main risk factor for Alzheimer's Disease (AD). The Protein-Tyrosine Phosphatase 1B (PTP1B) is related to several deleterious processes in neurons and emerges as a promising target for new therapies. In this context, our study aims to investigate the age-related changes in PTP1B content, insulin signaling, ß-amyloid content, and Tau phosphorylation in the hippocampus of middle-aged rats. Young (3 months) and middle-aged (17 months) Wistar rats were submitted to Morris-water maze (MWM) test, insulin tolerance test, and molecular analysis in the hippocampus. Aging resulted in increased body weight, and insulin resistance and decreases learning process in MWM. Interestingly, the middle-aged rats have higher levels of PTP-1B, lower phosphorylation of IRS-1, Akt, GSK3ß, mTOR, and TrkB. Also, the aging process increased Tau phosphorylation and ß-amyloid content in the hippocampus region. In summary, this study provides new evidence that aging-related PTP1B increasing, contributing to insulin resistance and the onset of the AD.


Assuntos
Hipocampo/fisiologia , Insulina/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/fisiologia , Aprendizagem Espacial/fisiologia , Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Resistência à Insulina/fisiologia , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia
15.
Einstein (Säo Paulo) ; 16(3): eAO4353, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-953188

RESUMO

ABSTRACT Objective To investigate the effects of physical training on metabolic and morphological parameters of diabetic rats. Methods Wistar rats were randomized into four groups: sedentary control, trained control, sedentary diabetic and trained diabetic. Diabetes mellitus was induced by Alloxan (35mg/kg) administration for sedentary diabetic and Trained Diabetic Groups. The exercise protocol consisted of swimming with a load of 2.5% of body weight for 60 minutes per day (5 days per week) for the trained control and Trained Diabetic Groups, during 6 weeks. At the end of the experiment, the rats were sacrificed and blood was collected for determinations of serum glucose, insulin, albumin and total protein. Liver samples were extracted for measurements of glycogen, protein, DNA and mitochondrial diameter determination. Results The sedentary diabetic animals presented decreased body weight, blood insulin, and hepatic glycogen, as well as increased glycemia and mitochondrial diameter. The physical training protocol in diabetic animals was efficient to recovery body weight and liver glycogen, and to decrease the hepatic mitochondrial diameter. Conclusion Physical training ameliorated hepatic metabolism and promoted important morphologic adaptations as mitochondrial diameter in liver of the diabetic rats.


RESUMO Objetivo Investigar os efeitos do treinamento físico nos parâmetros morfológicos e metabólicos de ratos diabéticos. Métodos Ratos Wistar foram randomizados para quatro grupos: controle sedentário, controle treinado, diabético sedentário e diabético treinado. Diabetes mellitus foi induzido por administração de Aloxana (35mg/kg) nos Grupos Diabético Sedentário e diabético treinado. O protocolo de treinamento físico incluiu natação com carga de 2,5% do peso corporal, por 60 minutos por dia (5 dias por semana) para os Grupos Controle Treinado e diabético treinado, durante 6 semanas. Ao final do experimento, os ratos foram sacrificados, e o sangue foi coletado para determinação das concentrações séricas de glicose, insulina, albumina e proteínas totais. Amostras do fígado foram coletadas para determinação do glicogênio, proteínas, DNA e diâmetro mitocondrial. Resultados O Grupo Sedentário Diabético apresentou redução no peso corporal, insulinemia e glicogênio hepático, além de maior glicemia e diâmetro mitocondrial hepático. O protocolo de treinamento físico em animais diabéticos foi eficiente para restaurar o peso corporal e o glicogênio hepático, além de reduzir o diâmetro mitocondrial hepático. Conclusão O treinamento físico melhorou o metabolismo hepático e promoveu importantes adaptações morfológicas, como no diâmetro mitocondrial no fígado de animais diabéticos.


Assuntos
Animais , Masculino , Ratos , Condicionamento Físico Animal/fisiologia , Natação/fisiologia , Mitocôndrias Hepáticas/ultraestrutura , Diabetes Mellitus Experimental/metabolismo , Fígado/metabolismo , Fígado/ultraestrutura , Glicogênio Hepático/metabolismo , Glicemia/metabolismo , Peso Corporal , Fator de Crescimento Insulin-Like I/metabolismo , Distribuição Aleatória , Ratos Wistar , Diabetes Mellitus Experimental/induzido quimicamente , Teste de Esforço , Insulina , Fígado/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...